Intracellular Trafficking of Variant Chicken Kidney Ae1 Anion Exchangers

نویسندگان

  • Tracy L. Adair-Kirk
  • Kathleen H. Cox
  • John V. Cox
چکیده

The variant chicken kidney AE1 anion exchangers differ only at the NH(2) terminus of their cytoplasmic domains. Transfection studies have indicated that the variant chicken AE1-4 anion exchanger accumulates in the basolateral membrane of polarized MDCK kidney epithelial cells, while the AE1-3 variant, which lacks the NH(2)-terminal 63 amino acids of AE1-4, primarily accumulates in the apical membrane. Mutagenesis studies have shown that the basolateral accumulation of AE1-4 is dependent upon two tyrosine residues at amino acids 44 and 47 of the polypeptide. Interestingly, either of these tyrosines is sufficient to direct efficient basolateral sorting of AE1-4. However, in the absence of both tyrosine residues, AE1-4 accumulates in the apical membrane of MDCK cells. Pulse-chase studies have shown that after delivery to the cell surface, newly synthesized AE1-4 is recycled to the Golgi where it acquires additional N-linked sugar modifications. This Golgi recycling activity is dependent upon the same cytoplasmic tyrosine residues that are required for the basolateral sorting of this variant transporter. Furthermore, mutants of AE1-4 that are defective in Golgi recycling are unable to associate with the detergent insoluble actin cytoskeleton and are rapidly turned over. These studies, which represent the first description of tyrosine-dependent cytoplasmic sorting signal for a type III membrane protein, have suggested a critical role for the actin cytoskeleton in regulating AE1 anion exchanger localization and stability in this epithelial cell type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular Trafficking of Variant Chicken Kidney AE1 Anion Exchangers: Role of Alternative NH 2 Termini in Polarized Sorting and Golgi Recycling

The variant chicken kidney AE1 anion exchangers differ only at the NH 2 terminus of their cytoplasmic domains. Transfection studies have indicated that the variant chicken AE1-4 anion exchanger accumulates in the basolateral membrane of polarized MDCK kidney epithelial cells, while the AE1-3 variant, which lacks the NH 2 -terminal 63 amino acids of AE1-4, primarily accumulates in the apical mem...

متن کامل

Multiple cytoplasmic signals direct the intracellular trafficking of chicken kidney AE1 anion exchangers in MDCK cells.

AE1/F(c) receptor chimeras have been used to define the sequences that direct the basolateral sorting, recycling and cytoskeletal association of the chicken AE1-4 anion exchanger in MDCK cells. These analyses revealed that amino acids 1-63 of AE1-4 were sufficient to redirect a cytoplasmic tailless murine IgG F(c)RII B2 receptor from the apical to the basolateral membrane of MDCK cells, where F...

متن کامل

Molecular physiology and genetics of Na+-independent SLC4 anion exchangers.

Plasmalemmal Cl(-)/HCO(3)(-) exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl(-)] and cell volume. The Cl(-)/HCO(3)(-) exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid-base equivalents and Cl(-). This review focuses on Na(+)-independent electroneutral Cl(-)/HCO(3)(-) exch...

متن کامل

Glycophorin A Rescues Mutant AE1 Loss-of-Function in Recessive dRTA

The AE1 gene encodes band 3 Cl 2 /HCO 3 2 exchangers that are expressed both in the erythrocyte and in the acid-secreting, type A intercalated cells of the kidney. Kidney AE1 contributes to urinary acidification by providing the major exit route for HCO 3 2 across the basolateral membrane. Several AE1 mutations cosegregate with dominantly transmitted nonsyndromic renal tubular acidosis (dRTA). ...

متن کامل

AE anion exchangers in atrial tumor cells.

Intracellular pH homeostasis and intracellular Cl(-) concentration in cardiac myocytes are regulated by anion exchange mechanisms. In physiological extracellular Cl(-) concentrations, Cl(-)/HCO(3)(-) exchange promotes intracellular acidification and Cl(-) loading sensitive to inhibition by stilbene disulfonates. We investigated the expression of AE anion exchangers in the AT-1 mouse atrial tumo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 147  شماره 

صفحات  -

تاریخ انتشار 1999